
Journal of Computational Physics 229 (2010) 5486–5497
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
GPU-accelerated molecular dynamics simulation for study of liquid
crystalline flows

Alfeus Sunarso *, Tomohiro Tsuji, Shigeomi Chono
Department of Mechanical Engineering, Kochi University of Technology, Kami-shi, Kochi 782-8502, Japan
a r t i c l e i n f o

Article history:
Received 20 October 2009
Received in revised form 24 February 2010
Accepted 30 March 2010
Available online 13 April 2010

Keywords:
Molecular dynamics
Large scale simulation
Graphics Processing Unit (GPU)
Macroscopic flow
Anisotropic molecule
Liquid crystals
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.03.047

* Corresponding author. Tel./fax: +81 887572150
E-mail address: sunarso@kochi-tech.ac.jp (A. Sun
a b s t r a c t

We have developed a GPU-based molecular dynamics simulation for the study of flows of
fluids with anisotropic molecules such as liquid crystals. An application of the simulation
to the study of macroscopic flow (backflow) generation by molecular reorientation in a
nematic liquid crystal under the application of an electric field is presented. The computa-
tions of intermolecular force and torque are parallelized on the GPU using the cell-list
method, and an efficient algorithm to update the cell lists was proposed. Some important
issues in the implementation of computations that involve a large number of arithmetic
operations and data on the GPU that has limited high-speed memory resources are
addressed extensively. Despite the relatively low GPU occupancy in the calculation of
intermolecular force and torque, the computation on a recent GPU is about 50 times faster
than that on a single core of a recent CPU, thus simulations involving a large number of
molecules using a personal computer are possible. The GPU-based simulation should allow
an extensive investigation of the molecular-level mechanisms underlying various macro-
scopic flow phenomena in fluids with anisotropic molecules.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Detailed studies on macroscopic phenomena at the molecular-level are attracting attention from various scientific com-
munities. For this type of study, molecular dynamics simulations have become an important tool. However, performing
molecular dynamics simulations to investigate the mechanisms of macroscopic phenomena is challenging as the simulations
involve a large number of molecules, and thus have a large computational load. For simulations that involve a large number
of molecules, single CPU computation systems are not sufficient, and therefore, systems with more computational power
such as supercomputers and cluster systems are required. Because of their high investment and operational costs, supercom-
puters and cluster systems are only available in large institutions.

Recently, Graphics Processing Units (GPUs) have provided an alternative means of accelerating scientific computations.
The use of GPUs for scientific computations was made possible by the advance of programming toolkits such as the GL Shad-
ing Language (GLSL) [1], C for Graphics (Cg) [2] and the NVIDIA Compute Unified Device Architecture (CUDA) [3]. The much
better performance/cost ratio of GPUs compared with CPU-based computing systems such as supercomputers and cluster
systems has motivated the development of various GPU-based scientific applications [4]. Furthermore, since computational
power has reached the teraflop level, GPUs enable large-scale simulations to be performed on a personal computer.

In the field of molecular dynamics simulations, there have been some studies in which the capability of GPUs for accel-
erating the molecular dynamics simulations has been demonstrated. In an early study, a GPU was used to accelerate the
. All rights reserved.

.
arso).

http://dx.doi.org/10.1016/j.jcp.2010.03.047
mailto:sunarso@kochi-tech.ac.jp
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5487
molecular dynamics simulation of thermal conductivity [5]. The use of a GPU to accelerate Coulomb summation and the non-
bonded force calculation, which are usually encountered in the molecular modeling of large biomolecules, has been reported
by Stone et al. [6]. Full GPU implementations of molecular dynamics simulations of Lennard–Jones particle systems have
been reported by Van Meel et al. [7] and Anderson et al. [8]. The simulation of Van Meel et al. was based on a cell-list struc-
ture, while the simulation of Anderson et al. was based on a neighbor-list structure. Most recently, a complete all-atom pro-
tein molecular dynamics simulation fully implemented on a GPU was reported by Friedrichs et al. [9]. Despite the diversity of
problems and simulation algorithms used in previous studies, it was demonstrated that computations on GPU are faster than
those on a single CPU core by one to two orders of magnitude.

In the present work, we present a GPU implementation of molecular dynamics simulations for the study of fluids with
anisotropic molecules such as liquid crystals. This is the first report on the GPU implementation of molecular dynamics sim-
ulations that deal with nonspherical particle (ellipsoid) systems undergoing macroscopic flows, while the previous works [5–
9] deal with simulations of spherical particle systems in equilibrium. It should be noted that GPUs have a large number of
processors but a limited amount of high-speed memory (register and shared memory) resources. A large amount of global
memory is available, but intensive access to the global memory would introduce a performance penalty due to its high la-
tency. As the computations of intermolecular interactions for ellipsoidal systems are not only computationally intensive but
also data intensive, the applicability of GPU for this kind of computation needs further investigation. The present work is
aimed to address this issue by presenting the suitable computation techniques and their detailed implementations on the
GPU. Even though the simulation methods used in the present work are similar to that used by Van Meel et al. [7], the de-
tailed implementations on the GPU require a specific consideration on the memory accesses management to obtain an opti-
mal performance. Some modifications in the GPU implementation details are required in order to fit the memory
requirement to the memory availability. Another important issue is that simulations involving macroscopic flows require
the data structures such as cell-lists and neighbor-lists to be updated at every time step. The main drawback of method pro-
posed in Ref. [7] is that cell-lists is not precisely up to date because the cell-lists is not updated after the calculation of posi-
tion but after the calculation of force. In addition, implementation of the method to the present work is problematic due to
the limited amount of shared memory. To overcome this problem, we propose a new algorithm to update the cell-lists by
using a cell index. The proposed algorithm is very efficient such that the cell-lists can be updated at every time step without
significant additional cost. It is also important to note that due to the limitation in high-speed memory resources, high per-
formance simulations on GPU are only achieved for single-precision simulations. The use of single-precision computations
raises a question about the reliability of the simulation results. Using a numerical example we demonstrate that the GPU-
based simulations are still reliable for simulation of systems that involve macroscopic flows.

The presentation in this paper focuses on GPU implementation of molecular dynamics simulations for the study of li-
quid crystalline flows. General computation algorithms and their specific implementations on a GPU, as well as some prob-
lems related to the optimization of computations, are discussed in detail. Even though the presentation focuses on
simulation of liquid crystalline flows, the simulation methods and GPU specific implementations presented here should
be useful for simulations of other fluids that involve anisotropic particles, such as simulations of amphiphilic self-assembly
(surfactant) system [10] as well as simulations of giant biomolecules [11,12]. Furthermore, the use of ellipsoid particle in
the modeling of polymer nanocomposite suspensions has been reported [13]. The proposed algorithm for updating the cell-
lists should be useful not only for simulations of anisotropic particle systems but also for molecular dynamics simulations
in general.

To demonstrate the applicability of the developed simulation, the dynamics of a nematic liquid crystal in a parallel plate
cell under the application of an electric field is simulated, and the calculation of bulk flow fields from the molecular states is
presented. A molecular-level study of liquid crystalline flows should be interesting from both scientific and engineering
viewpoints, as liquid crystals exhibit a strong coupling between the macroscopic flow field and molecular orientation
[14]. The flow field changes the molecular orientation, and conversely, the change in molecular orientation generates a flow
field known as backflow [15]. Recently, there has been an increasing interest in backflow owing to its potential applications
to microactuators [16,17] and micromanipulators [18]. For the development of microactuators and micromanipulators, the
understanding of the molecular-level mechanism of backflow is essential. A study using a 2D molecular dynamics simulation
[19] showed that the rotation and rearrangement of molecules under the application of an electric field introduces a local
bulk velocity gradient, which plays an important role in the generation of macroscopic flow. The computed velocity profile
in the 2D simulation is qualitatively in agreement with that observed in visualization experiment [20]. However, for more
precise investigations of the effects of molecular properties such as molecular polarity, molecular shape and initial molecular
arrangement, a full 3D molecular dynamics simulation is required. The GPU-based simulation presented here should enable
the full 3D simulations to be performed on a personal desktop computer.
2. Numerical methods

In this section, numerical methods for the simulation of backflow in a nematic liquid crystal confined between parallel
plates under the application of an electric field is presented. However, as noted previously, the simulation techniques pre-
sented here should be useful for simulations of other fluids that involve anisotropic particles. The developed simulation can
also be used for simulations of other flow problems such as shear flow by modifying the boundary conditions.

5488 A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497
2.1. Governing equations

For the simulation of liquid crystalline flows, we consider the computational domain and molecular model as shown in
Fig. 1. The simulations involve a large number of molecules, and thus have a large computational load. Therefore, simulations
with atomistic details are prohibitively expensive. To reduce the computational load the liquid crystal molecules are mod-
eled as ellipsoids. The intermolecular interaction of the ellipsoids is governed by the Gay–Berne potential [21].
/GB
ij ¼ 4� bui; buj; br ij

� � r0

rij � rðbui; buj; br ijÞ þ r0

" #12

� r0

rij � rðbui; buj; br ijÞ þ r0

" #6
8<:

9=;: ð1Þ
Here, bui and buj are unit vectors representing the orientations of molecules i and j, respectively, and br ij is the unit vector of
vector rijðbr ij ¼ rij=rijÞ that connects the centers of mass of molecules i and j. rðbui; buj; br ijÞ represents the contribution of the
molecular orientation to the intermolecular distance, while �ðbui; buj; br ijÞ defines the potential well. The parameters of the po-
tential (related to rðbui; buj; br ijÞ and �ðbui; buj; br ijÞÞ are molecular length scale r0, energy scale �0, molecular aspect ratio rr, en-
ergy ratio �r and the constants for the potential well l and m.

Most of liquid crystal molecules are polar, thus they have a permanent dipole pp. Under the application of an electric field
E = Eê, in addition to the permanent dipole pp, an induced dipole pi also exists. The magnitude and direction of the induced
dipole depend on the strength and direction of the electric field, pi ¼ aEðbe � buÞbu. Here, a is the polarizability, and E and be are
the strength and unit vector of the electric field, respectively. The contribution of the molecular dipole pi ¼ pp

i þ pi
i to the

molecular interaction is computed using the dipole–dipole interaction potential [22].
/DP
ij ¼

1
r3

ij

pi � pj � 3ðpi � br ijÞðpj � br ijÞ
� �

: ð2Þ
The interaction between the electric field and the molecular dipoles induces a torque on each molecule of TE
i ¼ pi � E. There-

fore, the force F and torque T can be computed as follows.
F i ¼ �
XN

j¼0;j – i

@/ij

@rij

� �
; ð3Þ

T i ¼ �
XN

j¼0;j – i

bui �
@/ij

@ bui

� �
þ TE

i : ð4Þ
Here, /ij ¼ /GB
ij þ /DP

ij is the total intermolecular potential. After the force and torque have been computed for all molecules,
the motion of the molecules can be computed by integrating the following equations:
mi
d2ri

dt2 ¼ miai ¼ F i; ð5Þ

Ii
d2

hi

dt2 ¼ Iiai ¼ T i; ð6Þ
where r and h represent the position and direction (orientation angle), and a and a represent the translational and rotational
acceleration, respectively. m and I are the mass and moment of inertia tensor of a molecule, respectively, and N is the number
of molecules.
E

re
P

doi re
P

doi

rij

ri
rj

ui
^

L

H

uj
^

e
P

oir

x

y

z

x

y

z

W

Fig. 1. Computational domain and molecular model.

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5489
2.2. Integration scheme

To compute the position and direction of molecules, Eqs. (5) and (6) are integrated using a leapfrog scheme [23]. The
implementation of the leapfrog scheme for translational motion (Eq. (5)) is simple and straightforward. However, for rota-
tional motion, the integration of Eq. (6) in terms of rotation angle h would lead to a singular condition when h approaches 0�
or 180�, and therefore, a special treatment is required. In this work, we use the DLM (Dullweber, Leimkuhler and McLachlan)
method [24], in which the rotation matrix is propagated instead of the rotation angle. Details of the rotation matrix compu-
tation can be found in [23].

In the integration of the equations of motion, we must compute the force and torque acting on all molecules (Eqs. (3) and
(4)). Note that /GB is a short-range interaction, while /DP is a long-range interaction. For the treatment of the long-range
interaction, we used the reaction field method, similar to that used in [22].

The computation of the intermolecular interaction is the most expensive part of the molecular dynamics simulation. In a
naive approach, in which each molecule interacts with all other molecules, the computational load of the intermolecular
interaction scales quadratically with the number of molecules N. For systems with large number of molecules, an N-squared
algorithm is not suitable, and thus the cell-list or neighbor-list algorithm is used instead. In the cell-list method, the simu-
lation box is decomposed into smaller domains called cells. The side length of each cell should be greater than or equal to the
cutoff radius, which represents the maximum range of the intermolecular interaction. A molecule interacts only with other
molecules in its own cell and the neighbor cells. In the neighbor-list method, a list of neighbor molecules with a distance
smaller than the cutoff radius is constructed for each molecule. Anderson et al. [8] demonstrated that a highly optimized
force calculation using cell-list method is faster than that using cell-list method reported in [7]. However, the time spent
on generating the neighbor lists is much larger than that spent on force computation. Updating the neighbor-lists at every
time step is time-consuming, and thus this method is not suitable for our simulation. As the arithmetic and memory oper-
ations in updating cell lists are proportional to number of molecules N, while the operations in updating neighbor-lists using
a naive algorithm are proportional to N2, updating the cell lists should be less time-consuming than updating the neighbor-
lists. Therefore, in the present work, we implemented our simulation using the cell-list method and developed an efficient
method for updating the cell lists at every time step.

In the simulation, we consider the constant-energy (NVE) ensemble as well as the constant-temperature (NVT) ensemble.
For the NVT ensemble, the temperature is controlled using the Gaussian thermostat [23]. Here, the translational and rota-
tional accelerations are corrected using the translational and rotational velocities (v and x) as follows:
Table 1
Comput

Step1
For t
v t þ
�

rðt þ
Usin
For r
x t þ
�

U1 ¼
U2 ¼
U3 =
RT(tbuðt þ
Note

Step2

Step3
E

Step4
aðt þ
aðt þ

Step5
u

Step6
vðt þ
xðt þ
a ¼ m�1
i F i � fv i; a ¼ I�1

i T i � fxi; ð7Þ

f ¼
PN

i ðv i � F iÞ þ
PN

i ðxi � T iÞ
mi
PN

i v2
i þ

PN
i ðI ixiÞ2

: ð8Þ
The details of the computation at each time step are shown in Table 1.
ation algorithm.

(computation of position and direction): Using the current states of molecules (at time t), calculate the new position r and direction bu at time t + Dt.
ranslational motion:

Dt
2

�
¼ vðtÞ þ Dt

2 aðtÞ
DtÞ ¼ rðtÞ þ Dtv t þ Dt

2

� �
g r(t + Dt), update the cell index that maps each molecule to a cell.
otational motion:

Dt
2

�
¼ xðtÞ þ Dt

2 aðtÞ
Rx

Dt
2 xx
� �

Ry
Dt
2 xy
� �

Rz(Dtxz)
+ Dt) = U1U2U3U2U1RT(t)

DtÞ ¼ Rðt þ DtÞburef

: Rx, Ry and Rz represent the rotation along the x, y and z axes respectively.

(construction of cell lists): Using the cell index, construct the cell lists.

(computation of force and torque): Using the new position r(t + Dt) and direction buðt þ DtÞ, calculate the force F(t + Dt) and torque T(t + Dt) (see
qs. (3) and (4)).

(computation of acceleration): Using the new force F(t + Dt), torque T(t + Dt) and rotation matrix R(t + Dt), calculate the accelerations a and a.
DtÞ ¼ 1

m Fðt þ DtÞ
DtÞ ¼ Rðt þ DtÞI�1

p RT ðt þ DtÞTðt þ DtÞ

(application of Gaussian thermostat): Using temporary velocities v 0ðt þ DtÞ ¼ v t þ Dt
2

� �
þ Dt

2 aðt þ DtÞ and x0ðt þ DtÞ ¼ x t þ Dt
2

� �
þ Dt

2 aðt þ DtÞ,
pdate the accelerations a(t + Dt) and a(t + Dt) (see Eqs. (7) and (8)).

(computation of velocity): Using a(t + Dt) and a(t + Dt), calculate the velocity v and x.
DtÞ ¼ v t þ Dt

2

� �
þ Dt

2 aðt þ DtÞ
DtÞ ¼ x t þ Dt

2

� �
þ Dt

2 aðt þ DtÞ

5490 A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497
2.3. Boundary conditions

For the simulation of backflow in a parallel plate cell, we impose periodic boundary conditions in the x and z directions
(see Fig. 1). To model the anchoring effect of the wall, layers of molecules with fixed position and orientation are introduced
at the upper and lower boundaries. To account for the restricting effect of the wall (the molecules are not allowed to escape
from the upper and lower boundaries), a wall potential is introduced. The wall potential is similar to the Lennard–Jones po-
tential, but only depends on smallest distance in the y direction of a molecule from the upper and lower boundaries.
3. Implementation on GPU

3.1. General parallelization method

To accelerate the molecular dynamics simulation using the GPU, we implemented our simulation using the CUDA pro-
gramming environment [3]. As a background to assist understanding of the discussion on the parallelization method, an
overview of the GPU architecture is given here.

A GPU consists of hundreds of processors that work in parallel. For example, an NVIDIA GTX280 card has 30 multiproces-
sors, with 8 processors on each multiprocessor, and thus there are a total of 240 processors on the card. The card has a 1 GB
DDR3 global memory, a 65536B constant memory and a texture memory that can all be accessed by all processors. In addi-
tion, each multiprocessor has a 16384B high-speed shared memory and 16,384 registers (32-bit) that can be used only by the
processors in the multiprocessor.

The GPU multiprocessors have a ‘‘Single Instruction Multiple Data” (SIMD) architecture, which is suitable for parallel
computations. As shown in Fig. 2, in performing a parallel computation, the computation tasks are organized in blocks of
threads. Each block of threads is handled by a multiprocessor, and each thread in a block is handled by a processor in the
multiprocessor. Therefore, all threads can share the data in the global, constant and texture memories, but only threads
in the same block can share the data in the shared memory. The data in the register are private to each thread and cannot
be accessed by other threads.

To parallelize the calculations in the molecular dynamics simulations, the calculations of position, velocity and force of
each molecule are assigned to the GPU threads. One thread handles the calculations for one molecule. This can be realized
by mapping the global index of threads to the index of molecules. In the CUDA programming environment, the global index
of a thread can be calculated from the size and index of the block (stored in blockDim and blockIdx structures) that the
thread belongs to and from the relative index of the thread in the block (stored in the threadIdx structure). For a 1D block,
for example, the global index can be calculated as follows: gidx = blockIdx.x*blockDim.x+threadIdx.x.

In the present work, most of the calculations were performed on the GPU, except for the generation of cell lists and the
summation of properties such as kinetic and potential energies owing to their poor parallelization property. To perform the
calculations on the GPU, the data of molecules (position, direction, rotation matrix, translational and rotational velocities and
accelerations, and molecular dipole) and the data of cell lists were initialized on the CPU and then copied to global memory
of the GPU. Constant data such as the size of the simulation box, the cell structure and the potential parameters were copied
to the constant memory of the GPU.

For the calculation of position (see Step1 in Table 1 and Fig. 2), for example, NT threads are launched on the GPU
(NT = NB � NTB P N; NT, NB, NTB and N are the total number of threads, the number of blocks, the number of threads per block
and the number of molecules, respectively). Each thread loads the position, velocity and acceleration data of each molecule
from the global memory into the register, and then computes the new position and writes the results back into the global
memory.

In accessing the global memory, there is a delay from the time a memory address is requested to the time it is available,
which is equal to the time required for hundreds of arithmetic operations. The memory latency can be hidden by the exe-
cution interleaved warps (32 threads per warp) on the GPU, as the warps whose data have been read can perform arithmetic
operations while other warps (on the same multiprocessor) are waiting for their data. However, if the data are shared by
threads, better performance can be obtained by using the high-speed shared memory instead of the global memory.
r v a, , r v a, , r v a, , r v a, , r v a, , r v a, , r v a, , r v a, ,r v a, , r v a, , r v a, , r v a, ,

1

1

2

2

3

3

4

4

5

1

6

2

7

3

8

4

N

NTB-1

NB1 2

NTB

index

threads

blocks

Fig. 2. General method for parallelization of computations in molecular dynamics simulation.

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5491
3.2. Optimization of force calculation

In the computations of position, direction, velocity, acceleration, electric torque and wall force, the calculations for a mol-
ecule only requires the data of the molecule itself, and therefore, the computations can be easily parallelized using the meth-
od described previously. In contrast, in the calculation of intermolecular force and torque on molecule i (see Eqs. (1)–(4)), the
data of position, direction and dipole moment of each neighbor molecule j are required. Therefore, special treatments are
required to compute the intermolecular interactions efficiently.

The computational load in the computation of intermolecular interactions can be reduced by reducing the number of
interactions per molecule. This can be realized by using the cell-list method. In this method, only the neighbor molecules
in the same cell and in the neighbor cells need to be considered. For calculation on a CPU, the number of interactions can
be further reduced by applying Newton’s third law (the force on molecule j resulting from the interaction of molecules i
and j equals the negative of the force on molecule i). However, the implementation of Newton’s third law on the GPU will
result in simultaneous writes by multiple threads on the same memory address, which cannot be handled efficiently by the
GPU. The simultaneous writes can be avoided by accumulating subsets of force in shared memory and writing them out to
global memory buffers [9]. For simulation of systems with long-range interaction that typically use the N-squared algorithm,
this method is acceptable because the cost of accessing the data of force in the global memory is covered by the speedup
gained from the reduction of the N2 operations in computation of intermolecular interactions. However, as noted in Ref.
[8], for simulation of systems with short-range interactions, in which the interactions are usually computed using cell-list
or neighbor-list method, the cost for accessing global memory would be larger than time saving from the reduction of N � Ni

(Ni is number of interaction per molecules which depends on number density and cutoff radius) operations in computation of
intermolecular interactions. Furthermore, as the computation of force and torque in the present work requires a large
amount of shared memory, there are no sufficient space for the accumulation of subsets of force and torque in the shared
memory. Therefore, Newton’s third law is not implemented on the GPU.

The parallelization of intermolecular force and torque computations uses the basic concept described in Fig. 2. One thread
is devoted to the calculations of force and torque of a molecule. In a simple algorithm, as illustrated in Fig. 3, each thread
loads the data of the reference molecule into the register, then loads the data of the counterpart molecule and computes
the interaction force and torque as it loops over all other molecules in the same cell and neighbor cells. In this simple ap-
proach, the memory access is not efficient because many threads read the same data from the global memory. Memory ac-
cess can be optimized by using the high-speed shared memory to reduce the redundancy of access to the relatively slow
global memory.

To take advantage of the shared memory, the computation is performed on a cell basis; a block of threads is assigned to a
cell and the computation of force and torque for a molecule in the cell is assigned to a thread in the block. As depicted in
Simple Algorithm

1 2 3 4 1 2 3 4

1 2

threads

blocks

1 2 3 4 5 6 7 8

global
memory

Optimized Algorithm

1 2 3 4 1 2 3 4

1 2

1 2 3 4 5 6 7 8

1 2 3 4

threads

blocks

global
memory

shared
memory

Fig. 3. Memory access in the calculation of intermolecular interaction using a simple algorithm (upper) and an optimized algorithm (lower). The access to
the data of counterpart molecules by different threads are indicated by different colors. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5492 A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497
Fig. 3, each thread in the block loads the data of the reference molecule from the global memory into the registers, and then
each thread loads the data of one counterpart molecule from the global memory into the shared memory. After all threads
have finished loading the data, each thread computes the interaction force and torque from the data in the registers and
shared memory and accumulates the force for the reference molecule. The loading of data of counterpart molecules and
the calculation of intermolecular interactions are first performed on the reference cell and then performed on all neighbor
cells. By loading the data of counterpart molecules into the shared memory, the data can be shared by threads in the same
block, and thus the ratio of arithmetic operations to memory operations is increased. This should lead to an improvement in
performance as compared with the simple approach, in which each thread loads the data of its counterpart molecules di-
rectly from the global memory each time the data are required. In the implementation of the computation algorithm for
the problem in the present work, there are some important issues that should be addressed carefully in order to obtain
an optimal performance.

One of important factors that determine the performance of simulation on a GPU is GPU occupancy, which indicates the
ratio of actually active threads to the maximum number of threads that can be handled by a multiprocessor unit. The number
of active threads is limited by the required number of shared memory per block and the required number of registers per
thread. For simulations of spherical particle systems [5–9], there should be no problem with GPU occupancy because the
required shared memory and registers to store the data of particle positions are relatively small. However, the GPU occu-
pancy is severely restricted by the large amount of shared memory and registers required for the calculation of force and
torque from the Gay–Berne potential and dipole–dipole potential in the present work. In addition, there is a large compu-
tational load due to a large amount of arithmetic operations involved. The computational load can be reduced by pre-calcu-
lating repeatedly-used terms and storing them into temporary variables in registers, but consequently the number of active
threads would be limited by the number of required registers per thread. Therefore, there are two possible approaches to
optimize the performance that need to be investigated. In the first approach, the GPU occupancy is maximized by reducing
the required shared memory and registers and put some data in the global memory, while in the second approach, the use of
shared memory and registers is maximized while GPU occupancy is kept to a relatively low level. For illustration, we con-
sider the case in which number of threads per block NTB is set to 128. If all data of counterpart molecules (position, direction,
dipole and type) are stored in shared memory the GPU occupancy is limited to 25%, but each thread can use up to 64 reg-
isters, which enables the repeatedly-used terms to be stored in the registers. The GPU occupancy can be increased to 38% by
storing the data of type of molecule in the global memory instead of shared memory and reducing the amount of the re-
quired registers to 40 registers per thread, and therefore, some terms should be computed repeatedly. It was found that
the two alternatives are almost equal in performance; the occupancy-maximized approach is only faster about 10% than
the memory-maximized approach.

For the computation of force and torque, the number of blocks is set to the number of cells, and the number of threads per
block is set to a value larger than or equal to the maximum number of molecules in the cells NMC to ensure that one thread
handles not more than one molecule and each molecule has a handling thread. It is possible for a thread to loop over more
than one molecules. However, doing this would lead to a performance drop due to severe warp divergence, and thus it
should be avoided. As the execution of threads in a multiprocessor is managed in warps of 32 threads, the number of threads
per block NTB should be set to a multiple of 32, NTB = 32 � ceil (NMC/32). This results in a large number of redundant threads
(more than NB � (NTB � NMC)), which should lead to a decrease in performance as the difference between the number of
threads per block and the number of molecules in a cell increases. In the simple method, the number of blocks is computed
from a predefined number of threads per block, NB = ceil (N/NTB), and thus the thread redundancy is less than NTB (NTB 6 512),
which is not significant compared with the large number of molecules (N P 100,000). The trade-off between memory opti-
mization and thread redundancy will be addressed in the performance tests.

3.3. Cell lists with cell index

With the presence of macroscopic flow, the molecules would cross the cell boundaries intensively. Therefore, the cell-lists
should be updated after the calculation of positions at every time step. Updating the cell lists using method proposed in [7]
results in cell lists that are not precisely up to date. It is possible to overcome this drawback by setting the side length of the
cell to a value larger than maximum interaction range plus skin thickness k, where k is the maximum displacement of the
molecule per time step. However, the implementation of this scheme in our simulation would lead to a large skin that would
impose a performance penalty due the computation of a large number of unnecessary interactions. Furthermore, the method
requires the buffering of cell lists in shared memory that would further reduce the GPU occupancy. Therefore, a new scheme
to updated the cell lists is required.

To overcome the problems noted above, we propose a scheme to update cell lists by using cell index, as depicted in Fig. 4.
It should be noted that the cell lists contain the number of molecules and the list of molecules for each cell. The data of cell
boundaries, the number of neighbor cells and the list of neighbor cells for each cell are stored in cell structure that stored in
the constant memory. The cell index is stored in the global memory and contains the index of the corresponding cell for each
molecule. Using the cell index, the mapping of each molecule to the cell where it belongs to can be performed in parallel
immediately after its position has been computed at every time step. The cell index is updated by comparing new position
with the boundaries of the corresponding cell and the neighbor cells. When constructing the cell lists, cell index is reloaded
instead of molecular positions, and thus memory operations can be reduced.

r1

1 3 4 7 2 5 6

position

molecules

1 2 1 1 2 2 1

r2 r3 r4 r5 r6 r7 rN

Fig. 4. Generation of cell lists using cell index.

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5493
The simple way for constructing the cell lists from the cell index is illustrated in Fig. 4. After the number of molecules in
each cell is reset to zero, the corresponding cell for each molecule is evaluated from the cell index, and then the index of the
molecule is added to the list of molecules of the corresponding cell. However, the implementation of this operation on the
GPU leads to simultaneous writes on the same memory address by multiple threads. To avoid the simultaneous writes,
updating list for a cell should be assigned to a threads block, similar to that for computing intermolecular force. Loading
the cell index into the shared memory can be done in parallel by all threads in the block, but evaluation of cell index and
adding data into the list are performed by only one thread while other threads stay idle. Because updating the cell lists only
involves memory operations (no arithmetic operations) and is serial in nature, it should be more efficient to perform it on the
CPU instead of on the GPU. To do this, the cell index is copied to the CPU and the cell lists are constructed using the cell index,
and then the new cell lists are copied to the global memory of the GPU. It is found that for simulations with low number
density and small cutoff radius, updating cell-lists using the full GPU approach is slightly faster than that using the GPU-
CPU approach, while for simulations with low number density but relatively large cutoff radius such as for simulations of
liquid crystalline flow in the present work, updating cell-lists using the GPU-CPU approach is about two times faster than
that using the full GPU approach.
4. Results and discussion

In this section, we compare the performance of GPU-based simulations with the CPU-based simulation, and then present
the application of the simulations to the study of backflow. For the simulation of nematic liquid crystals over a relatively
wide range of temperature, the parameters of the Gay–Berne potential are set as follows: rr = 5,�r = 1, m = 1 and l = 2. The
number density is q* = 0.188 and the cutoff radius is rcut = 7.
4.1. Performance tests

To investigate the performance of the GPU-accelerated simulation, we run our simulation on various computation sys-
tems as shown in Table 2. On the Windows system, the program was compiled using the CUDA toolkit and Microsoft Visual
Studio 2008 compiler, while on the Linux (openSUSE 11.1) systems, the program was compiled using the CUDA toolkit and
GNU compiler. Optimization level 2 (-O2) was used, and the option -use_fast_math was used to take advantage of the fast
function unit of the GPU.

The integration of equations of the motions, as shown by the algorithm in Table 1, are implemented in various subrou-
tines. Note that in the calculations of force and torque (Step3), the calculations of electric torque and wall force were sep-
arated from the calculation of intermolecular force. The computation times of the various subroutines for the simulation of
1,000,000 molecules (Nx = 100,Ny = 1000,Nz = 10) using the GPU are shown in Table 3. It is clear that the calculation of inter-
molecular force and torque is the most expensive part, comprising more than 90% of the computation time. The large com-
putational time is due to the large number of arithmetic operations involved. Furthermore, the large number of shared
memories and registers required in the calculations of interactions from the Gay–Berne and dipole potentials restricts the
GPU occupancy to a low level (25%), such that optimal use of the GPU can not be achieved. It is possible to increase the
GPU occupancy, as noted previously, but the memory access becomes less efficient, and thus performance improvement
Table 2
Specifications of computation systems used in performance tests.

CPU1 CPU: Intel Core 2 Extreme QX6850 3.00 GHz, Memory: DDR2 8 GB, OS: Windows XP 64 bit.
CPU2 CPU: Intel Core i7 940 2.93 GHz, Memory: DDR3 6 GB, OS: openSUSE 11.1 64 bit.
CPU3 CPU: Intel Xeon E5450 3.00 GHz, Memory: DDR2 16 GB, OS: openSUSE 11.1 64 bit.
GPU NVIDIA GTX280, installed on the CPU2 system

Table 3
Computation time per time step for various subroutines.

Computation routine Time [ms] Percentage

Step3 (computation of intermolecular force and torque) 959.464 93.80
Step5 (application of Gaussian thermostat) 20.000 1.96
Step1 (computation of position and direction) 16.751 1.64
Step2 (generation of cell lists) 7.394 0.72
Step6 (computation of velocity) 6.950 0.68
Step4 (computation of acceleration) 5.816 0.57
Step3 (computation of electric torque) 4.492 0.44
Step3 (computation of wall force) 2.032 0.20

5494 A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497
is not significant. As shown later, despite the use of GPU is not optimal, the GPU-based simulations are significantly faster
than the CPU-based simulations.

The generation of cell lists using the approach described in the previous section is very fast. The total time required for the
generation of cell lists for the system of 1,000,000 molecules is only 7.394 ms. This includes the times required for copying
the cell index from the GPU to the CPU (1.003 ms), the generation of cell lists on the CPU (5.058 ms), and copying the cell lists
from the CPU to the GPU (1.333 ms). Updating the cell index after the calculation of position and direction (Step1) only in-
creases the computation time of Step1 less than 2% (about 0.25 ms). Using this method, the cell lists can be updated at every
time step without any significant additional cost, and thus the method is suitable for simulations that involves macroscopic
flow.

The total computation times per time step for different system sizes simulated on various computation systems are plot-
ted in Fig. 5. Note that even though the CPUs are multicore, only a single CPU core was used in the simulations. Furthermore,
as noted previously, Newton’s third law was implemented for the simulation on the CPU but not for the simulation on the
GPU. In all computation system, the computation time increases almost linearly with the system size N. Despite the variation
of speedup for the different CPU types and system sizes, the simulation on the GPU is about 50 times faster than those on a
single CPU core. The variation in speedup for different system sizes is due to the thread redundancy, which depends on the
arrangement of molecules in the simulation box.

As noted previously, the optimization of the intermolecular force and torque calculation by using shared memory intro-
duces a large thread redundancy. To investigate the trade-off between memory optimization and thread redundancy, the
computation times of simulations using simple and optimized algorithms are shown in Table 4. In Case 1, the numbers of
molecules in the x and y directions are fixed (Nx = Ny = 100), while the number of molecules in z direction varies
(Nz = 10 � 400). In Case 2, the numbers of molecules in the x and z directions are fixed (Nx = 100,Nz = 10), while the number
of molecules in y direction varies (Ny = 100 � 4000). The arrangement in Case 1 results in a relatively severe thread redun-
dancy (NT/N) compared with that in Case 2. Despite the large thread redundancy, the simulations using the optimized force
calculation are faster than those using the simple force calculation. For a relatively low thread redundancy, speedup of about
40% can be obtained, while for a relatively high thread redundancy, the speedup decreases to about 10%.

Because the computation of intermolecular interactions and the specification of GPU in the present work are different
from those in Ref. [7], direct performance comparison can not be carried out. However, it can be noted that the 50 folds
speedup obtained in the present work is comparable to that obtained in Ref. [7], in which the speedup of 40 folds was re-
ported. Regarding to the specification of the GPU in the present work, one should expect that the speedup of our simulations
is about two times higher than that in Ref. [7], but considering the low GPU occupancy (25%) due to the limited high-speed
memory resources, the speedup of our simulation would be a quarter of that in Ref. [7]. Therefore the 50 folds speedup is
reasonable high for the problem considered in the present work.
105 106
102

103

104

105
CPU1
CPU2
CPU3
GPU

105 106
0

50

S

Fig. 5. Performance of simulations on CPUs and GPU for various system sizes.

Table 4
Trade-off between memory optimization and thread redundancy in the performance of simulation on GPU.

N Case 1 (Nz") Case 2 (Ny")

tS tO tS/tO NT/N tS tO tS/tO NT/N

100,000 142 100 1.42 1.47 140 100 1.40 1.42
200,000 365 260 1.40 1.47 260 210 1.24 1.74
300,000 485 410 1.18 1.72 400 300 1.33 1.62
400,000 655 540 1.21 1.66 520 390 1.33 1.68
500,000 810 680 1.19 1.77 650 510 1.27 1.59
600,000 970 820 1.18 1.72 780 590 1.32 1.64
700,000 1080 950 1.14 1.79 920 680 1.35 1.59
800,000 1265 1090 1.16 1.75 1020 780 1.31 1.62
900,000 1370 1230 1.11 1.80 1180 870 1.36 1.57

1,000,000 1620 1370 1.18 1.77 1320 1030 1.28 1.57
2,000,000 3065 2750 1.11 1.81 2690 2080 1.29 1.47
3,000,000 4560 4120 1.11 1.82 4000 2950 1.36 1.55
4,000,000 6070 5490 1.11 1.82 5330 3900 1.37 1.56

N: total number of molecules (N = NxNyNz, Case 1: Nx = 100, Ny = 100, Nz = 10 � 400, Case 2: Nx = 100, Ny = 100 � 4000; Nz = 10); tS: computation time for
simple algorithm (in ms); tO: computation time for optimized algorithm (in ms); tS/tO: speedup resulting from using optimized algorithm; NT/N: ratio of
number of threads to number of molecules for optimized algorithm. The values in bold (column 3) correspond to the values plotted in Fig. 5.

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5495
4.2. Simulation of backflow

To demonstrate the application of the simulation to the study of backflow, the dynamics of molecules under the appli-
cation of an electric field were simulated, and the bulk properties were computed by averaging the molecular properties.
The considered ensemble consists of 100,000 (Nx = Ny = 100,Nz = 10) molecules with number density q* = 0.188. The dimen-
sions of the corresponding simulation box (see Fig. 1) are L = H = 175r0 and W = 17r0. The simulation was performed at a
constant-temperature of T* = kBT/�0 = 2 and a constant electric field strength of k* = pE/�0 = 2.

Snapshot of molecules and the bulk velocity and molecular orientation after the application of an electric field for t* = 130,
as well as close-up views of molecules at various times, are presented in Fig. 6. In the snapshot and close-up views of the
molecules, the color represents the x-position of the molecules at equilibrium (t* = 0). In the plot of bulk properties, the bulk
velocity is shown by blue arrows, while the bulk molecular orientation is shown by green lines. Here, the bulk properties
were computed by dividing the computational domain into 10 subdomains in the y direction and averaging the properties
of the molecules in the subdomains.
velocity, *u

tisop
*

,noi
y

-0.2 -0.1 0 0.1 0.2
-80

-40

0

40

80

position, *x

t

t t t

Fig. 6. Snapshot of molecules (upper left) and bulk velocity and molecular orientation (upper right) after the application of an electric field for t* = 130, and
close-up views of molecules (lower) at times t* of 0, 130 and 250.

5496 A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497
The close-up views of molecules show the change in molecular orientation upon the application of an electric field. Along
with the change in molecular orientation, it can be seen that there is a bulk displacement of the molecules. As shown in the
snapshot of molecules, the molecules in the upper region move to the left, while those in the lower region move to the right.
The plot of bulk velocity at t* = 130 shows an S-shaped velocity profile. This confirms the generation of a bulk flow due to
molecular reorientation, as demonstrated by a 2D molecular dynamics simulation [19] and simulation using macroscopic
continuum approach [17] and observed in a visualization experiment [20].
4.3. Precision of bulk properties calculation

Early GPUs only supported single-precision calculations. Recently, GPUs that support double-precision calculations such
as the GeForce GTX 200 series and Tesla 10 series have emerged. However, double-precision operations are much expensive
than single-precision operation, thus the performance of double-precision simulations should be lower than that for single-
precision simulations. Furthermore, because the computation of intermolecular interaction in our simulation requires large
numbers of registers and shared memory while the numbers of available registers and shared memory are relatively small,
the use of double-precision data in the simulation would result in a large drop in performance. We verified this by running
single-precision and double-precision versions of our simulation on a GPU (GTX 280), and we confirmed that the perfor-
mance of double-precision simulation is about 1/30 of single-precision simulation. Therefore, to take advantage of the com-
putational power of the GPU, we must perform single-precision simulations.

To verify the reliability of the single-precision simulations, we compare the profiles of velocity and transient velocities
computed on a CPU using double-precision calculation with those computed on the GPU using double-precision and
single-precision calculations, as shown in Fig. 7. It can be seen that the difference between results computed using
single-precision and double-precision calculation on the GPU is comparable to that between the results computed using
double-precision calculation on the CPU and GPU. Note that the orders of the force calculation on CPU and GPU are slightly
different. As shown in [8], the different orders in the force summation result in different molecular trajectories, even for dou-
ble-precision simulations that start from the same initial conditions. The difference in molecular trajectories for double-pre-
cision simulations performed on the CPU and GPU results in a slight difference in the bulk velocity, as shown in Fig. 7. For
simulations on the GPU, the use of different precision would result in different molecular trajectories, which in turn result in
a slight difference in the values of bulk velocity. However, as shown in Fig. 7 (right), the difference between the results of
single-precision and double-precision simulations is not significance, because it is comparable to the statistical ‘noise’ of
the average (bulk) velocity, indicated by the fluctuation in the transient velocity. Therefore, the use of single-precision sim-
ulations in the study of liquid crystalline flows is acceptable.
4.4. Conclusion

We have presented the development of a large-scale molecular dynamics simulation for the study of flow of fluids with
anisotropic molecules such as liquid crystals. The simulation was implemented using a CUDA programming environment to
take advantage of the massive parallel processing capability of a general purpose Graphics Processing Unit (GPU). The com-
putation algorithm and its implementation on the GPU were discussed in detail. The computation of intermolecular inter-
actions was implemented using the cell-list algorithm, and the calculation on the GPU was optimized by taking
advantage of the high-speed shared memory. To update the cell lists at every time step, an efficient method using the cell
index has been developed. The performance tests showed that the computation on a GPU is about 50 times faster than that
on a single CPU core, and thus simulations involving a large number of molecules on a personal computer are possible. This
should allow the extensive investigation of the molecular-level mechanisms underlying the macroscopic flow phenomena in
vl
ey
tic
o

*
,u

-0.1

0

0.1

0.2

velocity,*u
-0.2 -0.1 0 0.1 0.2

-50

0

50

time,*t

pi
so
no
it

*
, y

t y

0 100 200

Fig. 7. Profile of velocity and transient velocity computed using single-precision and double-precision.

A. Sunarso et al. / Journal of Computational Physics 229 (2010) 5486–5497 5497
anisotropic fluids. The application of the simulation to the study of backflow has been demonstrated, and the issue related to
the precision of the bulk flow calculation has been addressed. It has been shown that there is no significant difference in the
bulk velocities computed using single-precision and double-precision simulations. Therefore, the GPU-based simulation is
still reliable for simulation of systems that involve macroscopic flow.

References

[1] R.J. Rost, OpenGL Shading Language, first ed., Pearson Education, 2004.
[2] R. Fernando, M.J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics, Addison-Wesley Professional, 2003.
[3] NVIDIA, CUDA Programming Guide Version 1.0, 2006 (current version 2.3, 2009).
[4] Sample of GPU accelerated applications: <http://www.nvidia.com/object/cuda_home.html>.
[5] J. Yang, Y. Wang, Y. Chen, GPU accelerated molecular dynamics simulation of thermal conductivities, J. Comput. Phys. 221 (2006) 799–804.
[6] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Accelerating molecular modeling applications with graphics processors, J.

Comput. Chem. 28 (2007) 2618–2640.
[7] J.A. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart, R. Belleman, Harvesting graphics power for MD simulations, Mol. Simul. 34 (2008) 259–266.
[8] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units, J. Comput.

Phys. 227 (2008) 5342–5359.
[9] M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L. Beberg, D.L. Ensign, C.M. Bruns, V.S. Pande, Accelerating molecular dynamic

simulation on graphics processing units, J. Comput. Chem. 30 (2009) 864–872.
[10] D.J. Michel, D.J. Cleaver, Coarse-grained simulation of amphiphilic self-assembly, J. Chem. Phys. 126 (2007) 034506.
[11] G. Wedemann, J. Langowski, Computer simulation of the 30-nanometer chromatin fiber, Biophys. J. 82 (2002) 2847–2859.
[12] B. Mergell, M.R. Ejtehadi, R. Everaers, Modeling DNA structure, elasticity, and deformations at the base-pair level, Phys. Rev. E 68 (2003) 021911.
[13] T. Yamamoto, H. Kasama, Brownian dynamics simulation of multiphase suspension of disc-like particles and polymers, Rheol. Acta, in press.

doi:10.1007/s00397-009-0405-5.
[14] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, second ed., Oxford University Press, 1993.
[15] F. Brochard, Backflow effects in nematic liquid crystals, Mol. Cryst. Liq. Cryst. 23 (1973) 51–58.
[16] S. Chono, T. Tsuji, Japan Patent No. 3586734 (20 August 2004) [in Japanese].
[17] S. Chono, T. Tsuji, Proposal of mechanics of liquid crystals and development of liquid crystalline microactuators, Appl. Phys. Lett. 92 (2008) 051905.
[18] Y. Mieda, K. Furutani, Two-dimensional micromanipulation using liquid crystals, Appl. Phys. Lett. 86 (2005) 101901.
[19] A. Sunarso, T. Tsuji, S. Chono, Molecular dynamics simulation of backflow generation in nematic liquid crystals, Appl. Phys. Lett. 93 (2008) 244106.
[20] T. Matsumi, T. Tsuji, S. Chono, Development of microactuators driven by liquid crystals (3rd report, visualization of velocity profiles between parallel

plates), Trans. JSME B 75 (2009) 953–958 (in Japanese).
[21] J.G. Gay, B.J. Berne, Modification of the overlap potential to mimic a linear site–site potential, J. Chem. Phys. 74 (1981) 3316–3319.
[22] Houssa, L.F. Rull, S.C. McGrother, Effect of dipolar interactions on the phase behavior of the Gay–Berne liquid crystal model, J. Chem. Phys. 109 (1998)

9529–9542.
[23] D.C. Rapaport, The Art of Molecular Dynamics Simulation, second ed., Cambridge University Press, 2003.
[24] A. Dullweber, B. Leimkuhler, R. McLachlan, Symplectic splitting methods for rigid body molecular dynamics, J. Chem. Phys. 107 (1997) 5840–5851.

http://www.nvidia.com/object/cuda_home.html
http://dx.doi.org/10.1007/s00397-009-0405-5

	GPU-accelerated molecular dynamics simulation for study of liquid crystalline flows
	Introduction
	Numerical methods
	Governing equations
	Integration scheme
	Boundary conditions

	Implementation on GPU
	General parallelization method
	Optimization of force calculation
	Cell lists with cell index

	Results and discussion
	Performance tests
	Simulation of backflow
	Precision of bulk properties calculation
	Conclusion

	References

